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Section I

INTRODUCTION

1.1 Program Objectives

The Air Force Aircraft Structural Integrity Program (ASIP) includes

requirements for fracture mechanics analyses of aircraft fleets to assess

safety limits and establish inspection intervals. This portion of the ASIP

includes requirements for calculation of the size (as a function of flight

time) of cracks which might be present in fleet airframes [1]. The initial

conditions for the calculations are cracks of prescribed size and shape

(specific to various structural details). The size and shape values are

based in part upon observations of actual airframe cracks from past service

experience, and in part upon the degree of inspectability of the airframe [2].

The crack-growth calculations, as currently required, seek to assess crack size

versus time for the deterministic initial conditions outlined above and for load

time-histories also assumed to be deterministic. The load spectra are prepared

by assembly of detailed profiles for each segment (taxi, climb, cruise, etc.)

of each mission type (cargo haul, training, air/air combat, etc.) which the

fleet is expected to fly [3].

In reality, variability appears in the actual initial-crack sizes, in the

load spectra (through individual aircraft usage variation), in material proper-

ties, and in manufacturing details. Fleet airframes may therefore contain a

population of cracks with sizes governed by a time-dependent probability dis-

tribution. The ASIP criteria seek to assess the effect of average loads on

the growth of above-average initial cracks. Risk analysis is an associated

structural integrity assessment function which in some cases seeks to quantify

the abnormal possibilities (extremely large initial crack size, above-average

loads) in terms of a probability model. Risk analyses of the latter type require

a tremendous volume of repetitive calculations. The objectives of this program

were to assess the capabilities of hybrid analog/digital computers to perform

such analyses in an efficient manner, and to employ random-process theory to

obtain an improved description of the random components of loading for use in

risk analysis.

The first program objective was organized as ten specific tasks, nine

involving the implementation, verification and evaluation of an analog simulation

of one or more aspects of currently accepted crack growth-rate models. The
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evaluation included an assessment of the ability of currently available Air

Force analog computing facilities to accommodate the simulations. The second

program objective was to develop a compatible analog-based method for simulating

two-parameter load models (i.e. stress peaks and ranges, mean and alternating

stresses, or stress ranges and ratios) based on power spectra and/or peak-

exceedance curves representative of an aircraft load history.

1.2 Modeling the Physical Problem

Formulation of a mathematical model of the physical problem of crack growth

under random initial conditions and random loading is a difficult and extremely

important step. Every effort must be made to insure that the mathematical model

adequately represents the physical situation, but is not so complicated as to

preclude numerical calculations because of excessive costs. Also, the model

must utilize a data base which is very large, but not very complete. The proce-

dures used to develop the model are summarized in the following paragraphs.

The mathematical model can be separated into two parts. The first part is

the environment encountered by the structure, viz: the random and non-random

components of loading. The second part is the crack-propagation behavior which

results from the loading.

When developing the loading model, every effort is made to maintain accuracy

for those statistics which are important in crack propagation, while economies

are instituted for those statistics which have less effect on crack growth-rates.

Numerous investigators in the past have treated aircraft loading as a Gaussian

random process. In a recent investigation, Shinozuka [4] considered flight-by-

flight loading to consist of ground loads, gust loads, GAG cycles, and maneuver

loads, for which:

"[The experimental evidence] tends to indicate

that most of the gust loading and the maneuver

loading for cargo or transport type airplanes

can be modeled by composite Gaussian processes

while the maneuver loading for fighter type
airplanes can be approximated more closely by
single Gaussian processes."

However, other evidence, such as studies of air turbulence models for use in

flight simulators [5] and estimates of fighter peak-n z-exceedance curves based

in part on flight data and in part on Vgh calculations [6] provide some evidence

of non-Gaussian characteristics of loading.
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Crack-propagation behavior has been shown to depend primarily upon the

sequence of stress minima and maxima occurring at critical locations in the

structure, coupled with the instantaneous size of the fatigue crack. The rate

of crack growth depends primarily on the difference, As, between each minimum

and its succeeding maximum. The Paris equation, the simplest form of crack-

propagation model, shows dependence only on this difference [7]. This is

essentially a linear damage-summation model similar to the Palmgren-Miner

hypothesis [8,9]. Linear damage-summation models possess an appealing simplic-

ity especially convenient for applications to random loading, in that the sum

of crack-size increments for many load cycles is independent of the specific

load sequence. Hence, the statistics of the crack-increment sum can be related

directly to the time-average statistics of a random process which describes the

loading. Forman et al. [10] have included a "layering" effect depending on the

ratio of successive values of stress minima and maxima, and an "acceleration"

effect depending on the ratio of the applied crack-tip stress intensity factor

to the material fracture toughness, providing a greatly improved model. With

only the "layering" effect, this is still essentially a linear damage-summation

model. With the incorporation of the "acceleration" effect, the time-average

statistics of the random loading are no longer sufficient, so if those statistics

are nonstationary, then such nonstationary statistics must be provided. With

this required statistical description of the loading, most of the appealing

simplicity of the linear damage-summation models remains. Simplified random-

process models for damage accumulation have been developed based on Miner's

rule [11] and on the Forman equation for crack-propagation [12].

However, the work of Schjive [13] and others has shown that fatigue crack-

ing in structures is in many cases sensitive to the specific load-application

sequence. This effect derives from the material "memory" associated with plastic

yielding and subsequent residual stresses near the crack tip. Modifications of

the linear damage-summation models for crack-propagation have been made by

Wheeler [14], Willenborg et al [151, Dill and Saff [16], and others to account

for material memory effects. Past implementations of these models have generally

required cycle-by-cycle summation of crack-size increments. Several efficient

digital computer codes (e.g., Ref. 17) have been developed for this purpose.

More recently, Galagher [18] has shown for transport aircraft that flight-by-

flight summation can be used to predict crack growth accurately if the rate
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equation is formulated on a per-flight basis, with parameters fit to flight-by-

flight crack-propagation test data.

With regard to load models, it was the judgment of the present investigators

that load models should not be restricted to Gaussian load spectra unless both

adequate modeling accuracy and simplification of the resulting analysis could be

assured. As will be described in Subsection 2.2, such assurance is lacking. On

the other hand, the crack-propagation models described above have been repeatedly

verified by comparison of predictions with laboratory experiments using determin-

istic loading. Hence, the present investigators accepted these crack-propagation

models in this program.

1.3 Results of Previous and Present Programs

The statistics of crack size were investigated by Monte Carlo simulation,

using a small analog computer, in a previous program under Air Force Contract

F33615-74-C-3046. Repeated runs with the loading simulated by a white-noise

generator filtered through analog sample-and-hold circuitry yielded crack-size

histograms to which 3-parameter Weibull distributions were fit by maximum-

likelihood estimation [19]. Crude models were used for both the crack growth-.

rate behavior and the random loading because the primary objective of the

investigation was to assess the feasibility of performing Monte Carlo simula-

tion on an analog computer with the rising exponential type of dynamics generally

exhibited by crack size versus time. A simplified form of the Paris equation

without local geometry-effects was taken as the growth-rate model:

N

da/dN z C (AS,a) 
p

p(i

where

a = Instantaneous crack size

N = Number of applied stress cycles

As = s - s . = Stress range
max mmn

and where C p, N are empirical constants. For the purpose of the simulation,

N was assumed equal to 4 (representative of a wide range of aluminum alloys)

and C was fit to experimental data for a 7075-T6 alloy [20]. The stress range,p
As, was assumed as a Gaussian random process with parameters fit approximately

to available fighter exceedance data [6]. The investigation did demonstrate
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the feasibility of analog Monte Carlo simulation for cracks grown by random

loading. However, the specific results obtained were later found to be in

error due to an unexpected low-frequency resonance in the sample-and-hold

circuitry which was discovered in the course of the present program.

In the present investigation, eight of nine specific simulation tasks were

developed as analog programs which were implemented on a CI-5000 hybrid analog/

digital computer at the USAF Aeronautical Systems Division (ASD/ADSD). Each

task was demonstrated by means of a few verification runs. However, full

Monte Carlo simulations were not performed for reasons which arose from

developments under the remaining task in the investigation.

Development of this latter task (two-parameter simulation of random

loads) led to the discovery of the low-frequency sample-and-hold resonance

mentioned above. The use of sample-and-hold circuits was therefore rejected.

Also, considerations of the limits of analog equipment for processing high-

frequency signals led to the conclusion that much more computation time would

be required for one airplane life than had previously been estimated. Hence,

the analog Monte Carlo simulation approach to risk analysis appeared to be much

less efficient than previously expected.

In the meantime, other developments under the load modeling task led to

two ideas for improvement of the simulations. First, the crack growth-rate

equations were reformulated in terms of a damage parameter which varies inversely

with crack size. This transforms the dynamics of crack growth from exponential

to nearly linear behavior. The new formulation was used to implement the eight

specific analog simulation tasks.

Second, a general study of possible approaches to the simulation of random

loads led to the concept of applying estimation theory to the crack-growth predic-

tion problem. Estimation theory was developed by modern theorists in the field

of guidance and control, primarily as a tool for optimizing designs for electronic

control systems [21,22]. The present study has indicated that estimation theory

can be applied to the crack-growth prediction problem to obtain the sought-after

computational efficiency for risk analysis. Hence, the application of estimation

theory to crack-growth dynamics was considered as a part of the random-load simula-

tion task.

Details of the developments made under this program are presented in the

following sections. Section II discusses the transformation from crack size to
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damage parameter, and the benefits obtained by using a damage-parameter formula-

tion for risk analysis of random loads and crack sizes. In Section III, the

implementations of the specific analog simulation tasks are presented, together

with example runs and evaluations. Section IV presents conclusions and recom-

mendations, including discussion of the application of estimation theory to

the crack-growth prediction problem.
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Section II

FORMULATION FOR COMPUTATION OF

CRACK-GROWTH STATISTICS

2.1 The Damage Parameter "h"

For analysis of statistics of the crack size resulting from the application

of random loading to a fatigue crack, it can be very advantageous to use a damage

parameter "h" in place of the crack size "a". For some mathematical models of

crack propagation behavior, such as the Paris equation with no geometry factor,

an appropriately chosen definition of "h" can simplify the statistical deriva-

tion to triviality. For other more complicated models, the statistical deriva-

tion is at least somewhat simplified.

The simpliest commonly used model of crack propagation behavior is the

Paris equation (see Eq. 1). If the growth-rate exponent N is chosen equal to
p

4 (representative of aluminum alloys), then:

da/dN Z C (AS)4 a 2(2)p(2

If the damage parameter is simply chosen as

h = 1/a (3)

then substitution of Eq. 3 into Eq. 2 gives:

dh/dN Z -C (AS) 4  (4)
p

The change in h then depends only on the applied loading, and not on the value

of h itself. For the more general case of N >2, the damage parameter can beP

chosen as
1-N /2

h= a P(5

which provides

dh N N
(1i- -2) C (AS) P

2 p
(6)

Cases with N <2 are considered later in this subsection.
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Figure 1 shows constant-stress-amplitude time-histories of crack size "a"

and damage parameter "h", for crack growth according to the Paris model. These

histories show some problems which will affect analog simulation using crack

size. Simulation of crack size will always saturate the analog equipment short

of complete structural failure, as shown at (A). Scaling crack size to have its

critical value a below saturation level (B) makes the initial size quite smallcr

(C), and hence subject to analog error. This error is important because da/dN

is small initially, so that a very small error in the voltage representing initial-

crack size will yield a very large error in estimated time to the critical condi-

tion. This time-history is also subject to analog error at later times, because

of the extreme rate of change da/dN, but this form of error will have much less

effect on the estimate of time to the critical condition.

For the simple Paris model, an appropriate definition of the damage parameter

"h" has eliminated the dependence of the rate of damage accumulation on the

instantaneous value of accumulated damage. However, the advantages of the use

of a damage parameter are reduced for more complicated and more realistic models

of crack growth behavior, such as the Forman equation.

The Forman equation [10] is usually written as:

N
da CF (AK) F

dN = (1-R)K - AK (7)

c

where

AK z AS/
(8)

if local geometry effects are neglected. The parameters CF, NF, and Kc are

material constants. The crack size, a, and the stress difference As = s - smax min

are the same as for the Paris equation. The stress ratio R = smin/Smax introduces

the effect of the individual values smi and s
min max

It is convenient to substitute for AK, and to use As and s as the describers
max

of the stress. This provides the following equivalent form of the Forman equation:

CF NF NF/ S S
da~. Fmax[

da K (AS) a a (9)
c c max
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where

S Kcvr (10)

Equation 9 may be considered in three parts. The first is the basic relation

C N
da F (ASV_) F
dNK (i)

c

which is like the Paris equation. The second and third parts are multiplicative

corrections for experimentally observed effects: the "layering" effect (s max/AS),

and the "acceleration" effect [S c/(S -S max ) ].

A damage parameter may be defined for the Forman equation in the same manner

as was done for the Paris equation. Assuming NF>2 ,

1-N F/2 F (12)

N C N S S
dh F -) F (As F maxN c

c c max (13)

where

l/(NF - 2)
S = Kh F14
c c (4

This particular definition of the damage parameter results in a great simplifica-

tion of the crack growth relationship, but fails to achieve the triviality found

for the Paris model. The acceleration effect [Sc (S cSmax )] still depends on the

instantaneous value of the damage parameter. However, this dependence is fairly

simple and well-behaved. Analysis of the statistics of final crack size should

still be manageable.

Figure 2 shows constant-stress-amplitude time-histories of crack size "a"

and damage parameter "h", for crack growth according to the Forman model. The

time-history of crack size possesses the same problems as for the Paris model.

The time history of the damage parameter exhibits one problem not seen with the

9



Paris model: large rate dh/dN near complete failure. However, this problem

is not very important; it compares with the least of the problems cited for

crack-size history, and is less severe. It should also be noted that if hcr

is based on an isolated high overload, the rate dh/dN will not increase

excessively until well after h is exceeded. This is because h socr cr

chosen provides almost zero probability of exceedence of S (catastrophicc

structural failure) for h > h (aircraft still in service). As a result,
cr

there will be small probability of smax near S , and consequently the crack-c

growth acceleration will not be severe.

Although the above choice of the damage parameter is extremely useful, a

definition of a damage parameter which would eliminate all dependence of crack

growth-rate on current damage would be especially desirable. Unfortunately,

incorporation of the acceleration effect, which includes the value of crack

size in a very different fashion from the first two effects, makes this

impossible. However, there may be some methods of further simplifying the

statistical analysis by changing the format of the crack-growth model. It is

not necessary to use the Forman model, if another relationship can be found

which provides similar agreement with the experimental data. For example,

acceleration need not be modeled as a multiplicative effect. It may be

additive, in which case the crack growth rate may be modeled as:

C N S S
da N (ASFa) max] +k c (15)
dNK [ K kF [S -S

c c max

If the same damage parameter "h" as described for the Forman equation is used,

the results are the same except that the term depending on the current damage

is additive rather than multiplicative. Such a change would further simplify

the statistical analysis of final crack size. The use of Eq. 15 has not been

pursued in this study because additive acceleration models have not been

verified by comparison with experimental results.

The definitions of the damage parameter "h" presented earlier in this

subsection depended on values of N or NF greater than two. For some materials,

such as steel, these values may be equal to or less than two, requiring different

definitions of h. These definitions will be considered here using the Paris

equation, and may be easily extended for application to the Forman equation.
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When N is less than two, the mathematical definition of the damage param-

eter is identical to that for N greater than two (Eq. 5). However, the behav-

ior of the damage parameter will be different, in that it will increase rather

than decrease from its initial value, as shown in Fig. 3. When Np<2 , "h" will

reach infinity when crack size "a" reaches infinity, so it is clear that for

the ideal case of a semi-infinite plate complete structural failure will not

occur in finite time. This compares with the earlier case of Np> 2 , where "h"

reached zero when "a" reached infinity, and complete structural failure did

occur in finite time for the ideal case.

When N is equal to 2, Eq. 5 is singular, and an entirely new definition

must be found. If the damage parameter is defined as

h - 9.n(a) (16)

then the Paris equation becomes

dh 2-= c (As)
dN p (17)

As in the case of N p<2, h increases with time, and an infinite value of h

represents complete structural failure.

No matter what the value of Np? it is not necessary to utilize the defini-

tion of "h" which reduces the Paris equation to an exactly constant rate of

change of "h". Such a definition, as presented for various values of Np so

far in this subsection will be referred to as the "natural" definition and is

desirable in that it simplifies the ensuing analysis. However, if the defini-

tion of the damage parameter is chosen for a value of Np different from but

close to the actual value, the analysis will remain sufficiently simple. For

the case of the Forman equation, where the rate of change of h is not exactly

constant even for the natural definition of h, there may be no noticeable

increase in analytical difficulty. In fact, the analysis with the Forman

equation may even be simplified by defining the damage parameter so that the

time rate of change of h is as constant as possible including consideration

of the layering and acceleration effects. This is accomplished by defining

h as if N F were somewhat larger than its actual value. It cannot be over-

emphasized that the definition of h utilized for a particular analysis is a
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free choice by the analyst, and its relation to the natural definition of h

for the particular crack growth rate equation is guided only by the analyst's

desire to obtain a simple and accurate analysis.

One reason for utilizing definitions of h different from the natural defi-

nitions, even for the Paris equation, is for comparison of behavior for various

values of Np. Figure 4 shows time histories for the damage parameter defined

as h = ln(a), the natural definition for Np = 2. Time histories are shown for

behavior with values of N equal to 1.8, 2.0, and 2.2. The three cases shown

have identical initial crack size, and their Paris equation coefficients Cp

were chosen to provide identical crack growth rate at the initial time.

2.2 The Statistics of Random Loading

As described in Subsection 1.2, the loading sequence characteristics which

have the greatest effect on crack growth are the values of minima and immediately

succeeding maxima on the applied stress, s . and s . The most important effectmln max

is that of As = s - s , with the individual values having a secondary effect.
max min

The statistical model of the environment encountered by the structure should there-

fore emphasize these characteristics, even though the corresponding statistics

might be much more difficult to establish than other characteristics of the loading

The Paris model of crack growth utilizes only the values of As. For this

model, a probability density function of this one variable suffices as a complete

loading model. The Forman model and other reasonably realistic models include

the effect of the individual values of smin and s on the crack growth rate.max

Because of the form of the crack-growth models, individual probability density

functions of these two variables are not sufficient. At least some information

about their correlation is necessary, and a joint density function of the two

variables would be especially desirable.

There are three approaches which may be used to determine the desired

statistical information about smin and smax . The first approach assumes that

the loading is Gaussian noise, and attempts to analytically derive the desired

statistical information. Given Gaussian loading, s, the individual probability

density functions of s . and s are well known [23]. However, the probabilitymmn max

density of As = s - s m depends upon the correlation between each minimummax mmn

and its associated (immediately succeeding) maximum, and can be obtained only

with difficulty by a numerical integration procedure developed by J.R. Rice

[24,25,261. It should be noted that As by definition cannot be negative, and
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a normal probability density always provides nonzero probability of negative

values. Hence, even when the loading is Gaussian noise, the probability density

function of As cannot be normal. An example of the probability density function

of As is shown in Fig. 5, for a particular Gaussian noise loading.

The joint density function of s min and s , desired for more realisticmax

crack growth models, is much more difficult to find. The necessary procedures

for developing such a joint density function are available [24]. Unfortunately,

the procedures include numerical methods because closed-form expressions could

not be formulated. Utilization of the procedures requires a substantial effort

which must be repeated for each new form of power spectral density considered.

For the present analog simulation effort, maximum use is made of Rice's

results without utilization of these procedures. An interim solution for

modeling time-histories of smin and smax has been developed for use in an analog

Monte Carlo approach. Although many approximations and assumptions are made,

for simplicity and because of the scarcity of information, the interim model

does produce time-histories whose statistics approximate the density functions

shown in Fig. 5 reasonably well.

The second approach to the determination of the statistics of s and
min

s utilizes a Monte Carlo analysis. Gaussian noise with a particular powermax
spectral density is produced on analog computer equipment by driving a linear

system with a white-noise generator. The digital portion of a hybrid analog/

digital computer then samples the Gaussian noise sufficiently rapidly to

determine the occurrences and values of minima and maxima. These values are

processed by the digital computer, over a substantial time period, to determine

the smin and s statistics. This may not only be more cost-effective thanmax

Rice's derivation for the straightforward Gaussian case, but it is much more

suitable for extension to more complicated cases. For instance, certain forms

of non-Gaussian random loading may be treated, if the loading characteristics

are well enough known for appropriate signals to be generated for sampling and

statistical processing.

The third approach to the determination of the statistics of s . and smln max
is the most accurate, but depends on the availability of extensive actual load

histories. This approach involves examination of the load histories to deter-

mine the successive values of s , and sm, and inspection of these values to
min max'

determine their statistics. The loading is not necessarily Gaussian noise; in

fact, the investigator need not have any a priori knowledge of the loading
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statistics. This makes this third approach themnost flexible of all. The steps

involved are represented in Fig. 6. As shown, available flight data will give

sampled values of flight parameters at discrete times. These data can, for

example, be interpolated to provide assumed time histories. The maxima and

minima can then be identified, and the important characteristics such as As

can be established for each loading cycle. (A simpler but still useful approach

is to program a digital simulation of a discrimination counter.) These results

can then be inspected to determine the statistics of the input to the crack-

growth dynamic system.

In previous investigations of the statistics of aircraft loading, there

-have been attempts to characterize the loading sequence in some analytically

describable fashion [4,5]. The stress "s" has been assumed to be a Gaussian

processes. This might appear to be a simplification; i.e., an approximation

which makes the subsequent utilization of the load model easier. However,

there is no resulting simplification because, as described above, it is extremely

difficult to derive the statistics of smin , sm, etc. from the power spectral
mn max'

density of s, and the resulting statistics are not Gaussian anyway. Therefore,

the third approach described above for determination of the statistics of s in

and s (i.e., direct inspection of large quantities of flight data) is themax

method of choice for crack growth risk analyses. This approach avoids both the

necessity to analytically describe the loading, and the difficult analytic

determination of its important statistics.

The crack-growth dynamic system can be modeled with either load cycles or

time (flight hours) as the independent variable. If the system is modeled with

load cycles as the independent variable, some correspondence must be established

between time and cycles. Fortunately, the number of load cycles per unit time

varies little among various samples of the random loading, even though the impor-

tant characteristics of the loading may vary substantially. Sufficient accuracy

might therefore be obtained by utilizing the mean value of load cycles per unit

time to transform from the statistics in terms of load cycles produced by the

dynamic model, to statistics in terms of flight hours. However, when direct

inspection of flight data is used to obtain loading statistics, there is no

need to depend upon the expected number of load cycles per unit time. Since

the sampled flight data includes time information, the statistics can simply

be gathered in terms of occurrences per unit time. Expected total number of
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load cycles per unit time may be one of the statistical parameters measured,

but it need not be a basis on which all other statistics are dependent for

their expression in terms of time.

Consideration of the statistics necessary for accurate determination of

the "acceleration effect" provides further reason for obtaining statistics

from direct inspection of flight data. The Forman equation (Eq. 13) indicates

what the important characteristics of the loading will be for the basic, layer-

ing, and acceleration effects. The basic and layering effects merely require

some moments of the joint probability density function of s min and s , ormln max

perhaps that of As and s for better accuracy of results. The accelerationmax

effect will require adequate information concerning the occurrences of excep-

tionally large values of s . It is known that a simple Gaussian model formax

stress "s" will provide inaccurate estimates of occurrences of such large values

of s [ 5]. Improved analytically describable models would provide bettermax

estimates, but their accuracy would always be questionable. Direct inspection

of flight data can avoid this problem, as long as the need for the statistics

of large values of s is predetermined. The first few moments of the prob-max

ability density of s cannot be expected to provide a sufficiently accuratemax

prediction of the occurrences of exceptionally large values, but separate

information concerning level exceedances can be gathered during inspection of

the flight data. If the acceleration effect is multiplicative as in the Forman

equation, then joint statistics with As and s must be considered for themax

level exceedances. However, if the acceleration effect can be modeled as

additive, then the statistics of level exceedances may be considered separately

from the statistics of As and s , greatly reducing the complexity of themax

statistics which must be handled. In order to determine whether an additive

acceleration effect models the material behavior sufficiently well, empirical

data such as presented in Ref. 20 should be consulted.

Interaction effects between load cycles must also be considered. Load-

interaction consists primarily of a reduction in crack growth-rate during the

few cycles immediately following the occurrence of a very large maximum stress.

When performing cycle-by-cycle analyses, this effect can be modeled by various

retardation rules, of which the most accurate [15,16] require current crack-size

values for the analysis. However, the effects of retardation can still be

incorporated in the load model if suitable assumptions about crack size are

introduced.
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An illustrative example based on the Willenborg model will be given here.

The Willenborg model [15] replaces the applied crack-tip stress intensity factor,

K, by an effective factor defined as:

K' K-K (18)

where

K =KL 'Aa/z_
R max i OL (19)

and where KOL  is the maximum stress intensity factor associated with a prior
max

overload cycle, Aa is the crack-size increment between the overload and current

cycles, and zOL is a parameter which defines the size of the hardened zone ahead

of the crack tip. The latter parameter can be calculated from plastic-zone-size

estimates:

OL ) 2 (20)(Km /ft
OL max ty

where fty is the material tensile yield strength. The Willenborg model then

defines the effective stress range and ratio according to:

AK' = K' - K' = K - K - (Kmi - K R) = AK (21)
max min max R mi R

R' = K'. /K' = (K. K R)/(K -) (22)
min max mi R Kmax

Thus, the procedure for incorporating Willenborg retardation in the load

model must preserve As while adjusting the stress ratio,

R = Kmin/Kmax = (Smax - As)/smax (23)

If it is assumed that K is sufficiently insensitive to local geometry effects,

the changes in these effects over a few load cycles can be neglected, and

Eq. 22 can be reformulated in terms of stress parameters:
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R' = (S max- AS - S R)/(Sma x - S ) (24)

where

S =SOL Aa/z (25)
R max OL

Once sR has been calculated for the current load cycle, R' can be found and

s can be adjusted according to:max

so 1-R S -As (26)
l-R' max l-R'

The forward extent of the retardation effect is bounded by

Aa <Aa =z ' (S /OL )2
-- max zOL 1 - (S S ) (27)

max max

Thus, incorporation of Willenborg retardation in the load model is

straightforward, provided that a reasonable method for estimating Aa can be

formulated. One possible approach is to include cycle-by-cycle da/dN calcula-

tions, using the Forman equation, in the cycle-by-cycle inspection of loads.

Since these calculations extend only over one typical set of (say) 50 flights

per mission type, the added computational cost is not excessive. The da/dN

calculations must be performed in parallel with several initial-crack sizes

which represent the entire range of crack size which might be expected in one

airplane life (e.g. MIL-A-83444 criteria size to critical size). Obviously,

the retardation effect will become less significant late in an airplane life,

when the current crack sizes are larger. The gradual disappearance of retarda-

tion will be reflected in the statistics of the adjusted load spectra (i.e. s'max

as given by Eq. 26), and may be thought of as a fictitious usage change for the

purpose of random-load crack-growth prediction.

Three approaches are possible for the loads-adjustment procedure. First,

one might assume that the effect of each overload extends only to the occurrence

of the next overload. In this case, the adjustments of s fall into non-max
overlapping compartments. Second, one might assume that the effect of each

overload, extends to the occurrence of the next larger overload, in which case
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the compartments overlap partially. Finally, one might assume that retardation

is a cumulative effect which applies to all cycles forward of a given overload,

subject only to the crack-growth limitation given by Eq. 27. In all cases, the

adjustments can be made by appropriately controlled scans of the raw reduced

flight data As, s . Selection of an approach and determination of the numbermax

of representative crack sizes required to permit smooth transitions of load

statistics over an airplane life are subjects which require additional study.

In particular, the latter determination should be based upon the results of

calculations with actual flight-loads spectra, especially since the amount of

detail required may be sensitive to usage.

2.3 Derivation of Crack-Size Statistics

The analytic prediction of crack growth statistics was considered as an

alternative to analog Monte Carlo simulation. If feasible, it would eliminate

the necessity of utilizing analog computer facilities. At the very least, this

analysis would result in a better understanding of the processes involved, so

that analog simulation could be performed both more accurately and more econom-

ically.

Analytic prediction of the statistics proved to be quite easy for simple

models of loading and crack growth behavior. A FORTRAN program was written

to predict the statistics of final crack size for a certain type of crack-

growth problem, specifically the problem considered in previous work [19].

The Paris equation is used to model crack growth behavior and the loading is

modeled as follows. The total number of loading cycles, N, is given, and

these cycles are divided evenly into n blocks. Within each block, the value

of As is constant. The value of As for each block is found by sampling an

input noise consisting of white noise and an additive constant. This is an

extremely crude model of the statistics of As, expecially since it even pro-

vides nonzero probability of negative As, but it suffices for an example.

Since the Paris crack-growth model was utilized with N = 4, the damageP

parameter h was chosen as h = 1/a, with the rate equation as given by Eq. 4.

Since the rate of change of the damage parameter does not depend on its

instantaneous value, statistical analysis proceeds with little difficulty.

The values of As for the various blocks are statistically independent, and

they have the same given normal probability density function. All moments

of this density function are known, where these moments are:
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m(AS) E[(AS) = - Expected value of (AS)p  (28)

4
Therefore, the moments of (As) are also known, being given by:

m (As = E[{(AS) 4P] = M (AS) (29)
p 4p

The total damage sustained by the structure after the N loading cycles,

with constant As (constant amplitude cycles) within each of the n blocks, is then:

N n 4
Ah =--c i (AS.)4

n pizl ) (30)

It is convenient to define:

Ah 1 n 4
NC n i=l (AS. (31)
p

which will eliminate confusion in the following analysis. The expected value

of g is simply:

- ((S 4  (AS)E[g] =g = [A)] = m A 4

1 
(32)

The statistics of g are represented by this mean value and by the central

moments, which are the moments of the probability density function about g.

The central moments are:
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gk-= E[(g-g) J =

n n n k 4
-k il1 i i E[ 4 { (AS. - g1]) (33)

n 1 2 k

k

In general, there are n terms to consider. This is excessive, and is reduced

by grouping terms of the same type, as described below. The total effect of

each group is calculated and added to the effects of other groups, greatly

reducing the number of computations necessary.

A "type" is distinguished from another "type" if the expected value of the

product:

k 4
E[ IT {(AS. ) - C}] (34)

j=l 

(.

is not the same. A more useful method of distinguishing between types can

be developed. If the indices iI through ik are separated into groups, with

identical values grouped together, then there will be y groups with Vi elements

in the ith group. The above expected value can then be written as:

k 4 - (As4)E [j I=  { (AS.)- 9}] = k 1  (35)k

j=l k J-1 k

20



Therefore, two terms are of the same type if they contain the same number of

groups y, and if the values of v. are the same. The order in which the values
1

of V . appear is not important.
1

A procedure has been developed for finding all possible types of terms

and calculating the number of the nk terms which are of each type, without

having to consider the terms individually. The contributions of all types

are combined to economically provide the results for the moments of g, which

can easily be processed to provide the moments for Ah.

As the number of blocks (n) increases, the probability density of Ah will

approach a normal density function. All odd central moments will approach zero,

and all even central moments will approach the appropriate values for a normal

density function. The amount by which a density function departs from the

normal can be represented by its eccentricities, which are defined as:

e = /( 2n/2
en 1In/Q(P2) for n odd

(36)

e = n - lx3x5x ... x (n-l) for n evenn n/2

A probability density function is then completely described by its mean,

standard deviation, and its eccentricities of order 3 and higher. Only the

first few eccentricities are necessary for a reasonable approximate representa-

tion of the statistics, since only the first few are likely to be non-negligible.

A FORTRAN program has been written which provides the mean, standard devia-

tion, and the third and fourth eccentricities (skewness and excess kurtosis) of

the probability density function for Ah. This program, using the procedure out-

lined above, is presented as Appendix A of this report. Some example output

from the program is presented as Appendix B.

2.4 Reanalysis of Previous Monte Carlo Simulation

A reanalysis of the previous work [19] on analog Monte Carlo simulation of

crack growth has been performed. This reanalysis has revealed some errors in

the work, and hence has affected the details of the continued development of

the Monte Carlo approach. This reanalysis has also helped to compare the analog

Monte Carlo approach with other approaches to the overall problem.
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The previous work performed Monte Carlo experiments of fatigue crack

growth as follows. White noise, actually limited in frequency but apparently

containing high enough frequencies for the purpose, was produced. The noise

with an added constant was sampled at intervals, and the value of each sample

was held until the next sample time, resulting in a function with steps. This

function was assumed to represent the loading parameter As in the Paris equation.

The dynamics of crack growth as modeled by the Paris equation were then simulated

on the analog computer, providing crack size as a function of time. This proce-

dure was rerun many times for the same initial conditions, with varying crack

size results because of the randomness of the simulated loading parameter As.

The varying results were then inspected to estimate the statistics of the final

crack size under the simulated conditions.

The previous work used the Paris crack growth model with N = 4. As hasP

been described, the appropriate choice for the damage parameter in this case is

h = 1/a, giving

dh -C (AS) (37)
aN P

Consequently, as explained in Subsection 2.3, experiments with the same loading

but with different initial values of crack size a are identical, when considered0

in terms of the change in the damage parameter from its initial value, Ah = h - ho -

The previous work consisted of two classes of experiments. Both had As

modeled as sampled white noise with standard deviation GAs' and an added constant

A-s. Within each class these parameters were the same, but initial crack size was

different for the different experiments. Each class can then be considered as a

number of identical experiments in Ah, with different scaling factors used in

modeling the experiments on the analog equipment.

The experimental data to be reanalyzed were available on punched cards. The

data were re-interpreted in terms of Ah providing the following four results for

each experiment:

Ah = mean of Ah

aAh = standard deviation of Ah

e(Ah) = = skewness of Ah

(Ah)

e4 = (2 - 3) = excess kurtosis of Ah

22
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The skewness and excess kurtosis represent the amount by which the probability

density function for Ah differs from a normal distribution. The above four

parameters were computed for four times in the life of each experiment of the

previous work (8K, 10K, 13.3K, and 20K cycles).

The means Ah were found to be fairly consistent within each class of

experiments. The standard deviations were less consistent, with variations of

20 percent between high and low values not uncommon. The third and fourth

eccentricities (skewness and excess kurtosis) were sometimes more than an order

of magnitude apart. Considering that each experiment provided about 200 reruns

for the data analysis, the experimental procedure must be seriously questioned.

The previous work reported that as the sampling rate was varied up to

about 200 Hz, the standard deviation of Ah was reduced. However, as the sampling

rate was increased above 200, even to 1200 Hz, the standard deviation did not

continue to decrease. This is in conflict with the known results described in

the previous subsection, and is therefore another reason to seriously question

the experimental procedure. Because of this abnormality, we attempted to

reproduce the previous work, utilizing the same electronic equipment. The

sample-and-hold circuitry was immediately recognized as the primary cause of

the discrepancies.

Figure 7 shows some examples of sampling of white noise using the solid-

state sample-and-hold mechanism on the analog computer. Although the white-

noise generator appears to be adequate, the samples are obviously correlated

(each sample is likely to be similar to the immediately preceding sample). It

is known that samples of white noise are completely uncorrelated regardless of

the sampling rate. This explains the observed discrepancies in the experimental

results.

The prediction method for crack growth statistics described in Section 2.3

was applied to the two classes of experiments. All of the input parameters for

the calculation were known except for the number of samples. Sampling was performed

at 250 Hz, which would provide (at the four times considered) 40, 50, 66.5, and

100 samples. However, because of the correlations of the samples introduced by

the sample-and-hold mechanism, the effective sampling rate was much slower. If

the calculations are performed for approximately one fifth the above sample rate

(9, 11, 15, and 22 samples at the four times considered), then the experimental

and analytical results are fairly consistent. The mean Ah is consistently about
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10 percent higher experimentally than analytically, and since it does not

depend on sampling rate this discrepancy is attributed to other analog circuit

errors. Comparison of values of ah also shows good agreement, but of course

this agreement is caused by the choice of sampling rate used in the analysis,

one-fifth the actual rate. The conclusion to be drawn from this is that the

sample-and-hold mechanism introduced a correlation time of about five samples

into its output. Inspection of Fig. 7 shows that this correlation time is

reasonable.

To summarize, it must be concluded that the previously reported statistics

of final crack size were primarily the result of a spurious effect in the analog

sample-and-hold device, which was therefore rejected for subsequent work. The

problem with the sample-and-hold device was unfortunate, but not serious, since

the device had only been utilized as a temporary measure pending more accurate

modeling of the loading characteristics. The more accurate modeling has been

accomplished by the interim model for time-histories of s m and s mentioned
min max

in Subsection 2.2.

2.5 Utilization of Density Moments

As previously described, the analytic derivation of final crack size

statistics results in the first few moments of the probability density function

of a damage parameter, h. Once these moments have been determined, they must

be used to develop a model of the probability density function itself. This

will then allow calculation of probabilities of interest, such as structural

failure or crack size large enough for visual detection. These probabilities

of interest are mathematically represented by inequalities in the damage

parameter.

It is not difficult to formulate models of probability density functions

which have the specified first few moments. It is much more difficult to formu-

late such models which are realistic. The first attempt was formulated as:

f(h) = (h) {1 + ot + (1h + a2h
2 + ... + a h } (38)

where f(h) is the density function for h, and f(h) is a normal density function

with the same mean and standard deviation. Unfortunately, although this exactly

matches the specified first n moments of the density function, the unspecified

higher moments were extremely unusual. The resulting model of the density

function appears valid near the mean, but far from the mean the function has
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negative values which are physically unrealizable. This approach would there-

fore be sufficient for computation of exceedance probabilities near the mean.

However, more extreme values cannot be evaluated by this approach.

Consequently, another approach must be taken. The second approach

considers the log-characteristic function of the probability density,

flw) = kn [_ e j wh 
f(h)dh]

where j = v7. This is simply the logarithm of the inverse Fourier transform

of the probability density function. For a normal density, this function is

simply a quadratic,

flW) = jwh - 2 (40)

The model to be used for crack-size statistics incorporates a higher-order

polynomial in h, which will satisfy specified values of the first few moments,

while giving reasonable values for the unspecified higher moments of the

probability density of h. This approach has been used previously for similar

problems [27].

For example, when the first four moments of a random variable are specified

as

2 3 4
mI = h m 2 = h m 3 = h m 4 = h (41)

and the higher-order moments are unspecified, the log-characteristic function

i(w) would be a quartic in w, and the first four moments of h are exactly

matched if [281:

1 2

(W) an I  1 2 m +
l2 2

1 3 2
16j 3 (M3 _ 3m2 m1 + 2ml) +

+ 4(m4 - 4m3m - 3m2 + 12m2 m2 _ 6m ) (42)
4 31 2 2 1 1
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However, the computation of the log-characteristic function is only a

first step. The desired results are exceedance probabilities for extreme

values of h, which will be important in risk analyses. This is theoretically

accomplished by applying a Fourier transformation to the exponential of i(w)

to provide the probability density f(h) and then taking appropriate semi-

infinite integrals of f(h) to provide the exceedance probabilities. Neither

step can be accomplished analytically; numerical methods will be required.
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Section III

ANALOG SIMULATION OF CRACK GROWTH

3.1 Results for Specific Tasks

Eight of nine specific analog programming tasks were completed in the

present investigation. The following subsections outline each task, describe

the procedures used to implement the task on the analog computer, and present

the results of test runs. For the purpose of the study, the simulations of

all expressions for stress intensity factors have been simplified by omitting

the constant factors, i.e. K = syrna for a crack in an infinite plate is

replaced by K ; s7a. (in any case, the constant factors would have been

absorbed in the Forman equation rate constant, C F.) All test runs were made

on the CI-5000/5 hybrid analog/digital computer at the USAF Aeronautical Systems

Division (ASD/ADSD), Wright-Patterson Air Force Base, Ohio.

3.1.1 Forman Equation

Simulation of the Forman equation on the analog computer is a straight-

forward task. The simulation was programmed in terms of the inverse damage

parameter "h" (see Eqs. 12-14 in Subsection 2.1). For the purpose of this

study, 7075-T6 aluminum was taken as an example alloy, with experimental

growth-rate data [20] fit by:

-13
NF =3 CF =5x-10 Kc =68ksi7in (43)

For the special case of NF = 3, Eq. 13 can be simplified to the form:

FS

dh _2 c
dh -C'(AS) S [S ] (44)

max S- S
c max

where S = K h and C' = (1-N F/2)C F/K

c cF Fc

The analog flow chart for Eq. 44 appears in Fig. 8. Stability and

accuracy were checked initially by a simulation with constant-amplitude

loading (smin and s held constant, cycles converted to analog computer
mn max 2

time by analog scaling laws). An initial condition of ho = 10 (a° = 1/h = 0.01

inch) was specified. The solution was stable until a crack size of approximately

(h = l/ra = 0.5) was reached.
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Typical results of additional tests with random load inputs are illustrated

in Figs. 9 and 10. Band-limited white noise with a 350 Hz cutoff frequency was

used to model both smin and smax. These signals are fully correlated because

they were produced from the same noise generator without time-delay. Hence,

As is still a constant-amplitude signal, as is evident in the figures. However,

dh/dt is still a random variable, since smax appears alone in Eq. 44. No over-

loads occurred in the analog operational amplifiers when the unfiltered noise

input was used. Figure 9 presents a single, real-time solution. Figure 10

illustrates a sequence of solutions with the analog run in its repetitive

operation mode. The several replicates run in this mode resulted in identical

values of final crack size, the value being in agreement with analytical calcula-

tion based on:

S

2 c (5
(dh/dN) = -C' (AS) S [ s (45)

max S - S
c max

This is in accordance with the property of fdh/dN (based on the Central Limit

Theorem) discussed in Section 2.

3.1.2 Retardation

Retardation models such as the Wheeler model (14] do not account directly

for load-interaction effects. The Wheeler model might be applied to the Forman

equation by replacing Eq. 9 with:

CF(sN S S

da F NF NF/2m max c

-= [(AS) a a S - (46)
dN K - S

c c max

The Wheeler exponent, m, can be determined by trial-and-error adjustment until

acceptable predictions are obtained for crack size versus cycles by comparison

with experimental data for a given load spectrum. It is evident that Eq. 46

can be simulated with no more difficulty than encountered in simulating a gen-

eral Forman equation. One need only define an appropriate damage parameter and

define S accordingly. For instance, for mNF > 2, the "natural" definition ofcF

the damage parameter is: -mNF/2
h= a (47)
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and S is then found to be
c

S= Kc/a = K h I / ( MN F - 2 ) (48)

Hence, the only extra step for a Wheeler-Forman simulation involves the

determination of the exponent, m, from laboratory tests.

However, the currently preferred interaction models account individually

for the effects of isolated overloads. The present program task required a

demonstration of the ability to simulate retardation by isolated overloads,

including a gradual return to unretarded growth rates. If one of the accepted

interaction models [15,16] is adopted, the simulation then implies that point-

calculations of the retardation effect must be made from continuous-function

representations of the stress parameters. Such a procedure would undoubtedly

increase the analog computing error to unacceptable levels.

Additional insight into the complications involved can be gained by

considering a Paris equation, modified by a simplified interaction model.

Suppose that

N

da/dN = C (AS,a) Po
p (9

in the absence of overloads, but that:

N'

da/dN = C (ASva) p (50)
P

- -AN/
N' = N (1-e-  ) + N e (51)
P Po Pl

replaces Eq. 49 immediately after an overload. In Eqs. 50 and 51, the cycle

count AN begins at zero on the cycle immediately following the overload, and

N , N are assumed to be given quantities with N < N . Hence, the retarda-
Pl Pl Po

tion effect appears as a series of step-drops followed by exponential rises in

the growth-rate exponent. One can conceive of simulating this model on the

analog. However, there is no longer any unique relation between crack size

and the damage parameter:

I-N'/2
h = a p (52)
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Therefore, a simulation directly in terms of crack size would be required.

Furthermore, the principal advantage of the analog (using a short period of

computing time to represent a large number of load cycles) is lost because of

the need to represent the individual overload cycles. Thus, if time-compression

is used, many isolated overloads appear lumped together in the stress-parameter

signals, and Eq. 50 is activated too infrequently. Similar conclusions can be

drawn about simulation of the Forman equation with an accepted retardation

model. Therefore, retardation models were not implemented on the analog computer.

3.1.3 Local Geometry Effects

The third programming task was to demonstrate the ability to vary a

simulated crack growth rate by including a local geometry effect, e.g. the

change in stress intensity factor for a crack which grows away from a fastener

hole. The geometry effect can be expressed in terms of a dimensionless

parameter, B, such that the effective range in stress intensity factor is

given by:

AK = AK (53)

The parameter, B, can usually be stated in terms of the ratio of crack

size to a significant dimension associated with the geometry of a local

structural detail. However, B cannot always be expressed analytically. For

example, B is a function of a/r for a crack growing away from a fastener hole,

where r is the radius of the hole. If the hole is open and is located in a

large panel subjected to uniform edge tension, and if the crack orientation

is perpendicular to the tension, then B= 3.4 for very small cracks (a/r - 0)

and B - l/v2 as a/r - -, according to a complex variable solution by Bowie [29].

This and many other numerical solutions for a associated with other simple

geometries are available in graphical form [30]. For more complicated

geometries, B can be obtained by finite-element analysis, e.g. using hybrid-

stress crack-tip elements [31].

If the local geometry effect is included in the Forman equation, the

crack growth-rate becomes:

N

da C F (54)
dN (1-R)K - BAK

c
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Note that R = K min/Kmax is not affected by S. Equation 54 can then be

transformed into:

N C N S S
- = (1 - N-) C- (SAS) F A S - c S (55)

c c max

where AK : Asria has been assumed as before. In principle, B can be described

directly in terms of the damage parameter, rather than crack size.

In the present study, the empirical finite-width correction factor:

S = 1 + 1.1896X 2 + 1.3016X 4 + 1.3650X 6 +

(56)

+ 1.3739X
8 + 1.4764X1

0

was chosen for implementation. Equation 56 represents the accelerating effect

of a single edge-crack of length, a, growing across a plate of width, b, with

the plate subjected to uniform tension, and with X = a/b. Thus, one could

calculate X continuously on the analog by substituting the damage-parameter

transformation to obtain:

1 2 /( 2 -NF)
b (57)

However, a function-generation approach is obviously more convenient

and more economical in terms of the number of analog components used. Most

modern analog computers include function generators which nominally provide

piecewise linear representations for functions of one input variable, with ten

to twenty segments allowed. Equation 56 provides a severe test of this capability

because of the strong nonlinearity in 5. Figure 11 compares Eq. 56 with a typical

representation obtained on the analog. In this case, the simulation has been

formulated in terms of 1/S to avoid numerical instability in the function generator.

The points were selected for segment generation for a plate width b = 10 inches

and rate exponent NF = 3, as follows:
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Crack Size, a Function Input, Function Output,

(inch) h=1/V'a (in.-1/2 1/

0.01 10 1.0000

0.01562 8 1.0000

0.04 5 1.0000

1.0 1 0.9743

1.235 0.9 0.8797

1.562 0.8 0.5709

2.041 0.7 0.2010

2.778 0.6 0.0467

4.0 0.5 0.0078

10.0 0.316 0.0000

The above table suggests that the crack-growth simulation would probably have to be

restricted to a maximum crack size between 1 and 2 inches for this case. Figure 11

illustrates the limitation of the analog's ability to match a severely nonlinear

function.

With regard to implementation of a geometry factor in the Forman equation,

it is apparent that can be inserted in the appropriate places in the flow chart

shown in Fig. 8, with the aid of several additional multipliers. One multiplier

is required to form the product smax just before the inverter which outputs

S - s a while three multipliers are required to form 83 and then the productc max'

S3 As2 near the upper center of the diagram. The solution-instability problem

will not exist for other types of geometry factors, such as for a crack growing

away from a fastener hole. Also, the exact function will be easier to match

because the nonlinearity is much less severe.

3.1.4 Randomized GAG Sequence

For the purpose of predicting crack growth a GAG cycle can be treated as

having two components, both of which result from the sudden change in mean stress

as an airplane takes off or lands. For example, when the airplane taxies and

during the pre-takeoff roll, a point on the lower skin of the wing experiences

small-amplitude stress oscillations about a negative (compression) mean. As

the airplane approaches takeoff speed, the wings bear an aerodynamic lift which

approaches the aircraft weight and reverses the sign of the wing static bending
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moment. Following takeoff, the wing lower skin experiences somewhat larger

stress oscillations about a positive mean. One can thus identify two effects

on crack growth. First, the initial change in mean stress is equivalent to a

single, relatively large range at the beginning of each flight. The magnitude

of the GAG range can be treated as deterministic (effect of mean only), as a

deterministic range from last taxi minimum to first gust maximum, or as random

with a small variance equal to the sum of the variances associated with taxi

and gust loads. The second effect is that the change in mean stress must be

accounted for in the flight-loads cycles. This effect of the mean change on

the two-parameter load model is that the values of s increase after takeoff,max
while the values of As are not directly affected by the GAG event.

The fourth programming task required a demonstration of the ability to

randomize the sequence and time of appearance of a limited number of GAG ranges

having deterministic magnitudes. This task was easily accomplished by using

band-limited zero-mean Gaussian noise as a switching input summed with an

adjustable bias voltage, -a, to make the signal mean negative. With an

electronic comparator set to switch "on" when the total switching voltage

exceeds zero, a constant voltage As can be added intermittently to the0

continuous signal As(t) which represents flight-loads stress ranges. Figure 12

illustrates the required analog flow chart.

The average number of inputs of As per second can be estimated from the0

expected number of upward crossings of zero by the switching signal [32]:

1 - -a2/202
E(0) = 2 V e (58)

where

a = G(f)df (59)

- 2 2 1/2 (60)
S = -f f G (f)df]

0 U0

and where G(f) is the power spectral density of the Gaussian noise in units of

(volts) 2/Hz. For band-limited white noise, Eqs. 59 and 60 are easily evaluated,

resulting in:
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= 2f // (61)0 c

where f is the cutoff frequency. The value of a can then be determined from
c

Eq. 58 to provide the proper average time between GAG cycles.

Figure 13 illustrates some typical results from a series of test runs in

which As(t) = 0 to isolate the effect of As . The bias voltage, X, was variedo

from -1.51 to -0.91 volts, with As = 10 volts. The Gaussian noise switching0

input is shown as x(t), and has 1 volt rms with a 350-Hz cutoff (a = 1,

V,= 405 sec-).

The increase of average time between GAG cycles with decreasing a is

evident. The GAG cycle values appear to be random only because the pen-chart

recorder response is not rapid enough to reproduce As faithfully. The actualo

As can easily be varied over a small range to represent the random effect of0

first-gust-peak/taxi-minimum by adding a small-amplitude low-frequency sinusoidal

signal to As .0

3.1.5 Superposition of Random Flight Loads and GAG Cycles

The fifth programming task required a demonstration of the ability to simulate

the second effect of the GAG cycle, i.e. the change in mean stress (and s )max

following takeoff and landing. The implementation of this task requires two

comparators and a time clock. The time clock must be synchronized with the start

of the problem solution. Therefore, one simply arranges to compute:

t

= c dT (62)

on the analog, where t represents the current analog time and C is a scaling

factor chosen for convenience (to prevent the clock from saturating).

If the two comparators are fed with constant switching voltages ti and

t2 > ti, they can be used to choose between three load environments, with the

selection changed at computing times t = tj/C, t'/C. The analog circuit shown

in Fig. 14 provides such a choice between three random signals which have (in

general) different means and different variances. The output signal s(t) might

then be used to simulate smax . Figure 15 illustrates the performance of this

circuit with the analog in repetitive operation mode..
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3.1.6 Random Initial Condition

The sixth programming task required a demonstration of the ability to

simulate a suitable distribution of initial-crack sizes. Such a distribution

would be sampled infrequently (once per simulated airplane life) to provide

the initial conditions for a Monte Carlo simulation. A non-Gaussian model is

desired because initial-crack size distributions are usually skewed.

This task is implemented by using an appropriately shaped zero-mean

white-noise source. The shaping function is derived simply as:

A(x) = f(x)/f(x) (63)

where

x = x(t) = Noise signal

A(x) = Required shaping function

f(x) = Sought-for probability density of output

signal amplitudes

(x) = Probability density of input noise amplitudes

In the present case, f(x) corresponds to a Gaussian source with prescribed

rms voltage, G,

e-x2 /2 0(4~(x) 1 -x2/2Y_ 2
<Q(4

(x) = c727-7 x< (4

while a two-parameter Weibull distribution was sought for the output noise:

f(x) - X -(x/ ) 0 < x < > 0 (65)

Hence the required shaping function becomes:

A (x) jUl exp {x2 ()c} (66)

Note that the shaping function must be symmetric about x = 0 to account for the

restriction of the output to positive values.
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Figure 16 compares the required shape with a gain function actually

obtained from one of the analog function-generator components. The required

shape is intended to produce a Weibull distribution with a = 2.5 and 8 = 0.007

from Gaussian noise with a = 0.1. This is another case where the analog

component has difficulty in following a severely nonlinear function. (The

gain function shown was obtained only after seven function-generator circuits

had been tested for accuracy and rejected.)

The eighth gain function obtained (Fig. 16) was given an accuracy test by

sampling the noise signal 1,000 times at sampling rates of 50, 100 and 200 Hz.

The 1,000 sample values in each case were then used to obtain maximum-likelihood

estimates for the output distribution parameters, according to [33]:

N a

=l i (67)
a N N N

Ni I X. lin x. - (i l xi)(iE l= n x.)

N
1N 1al /a
N[ i1 x i ] (68)

where N is the total number of samples. The results obtained were as follows:

SAMPLING MAXIMUM-LIKELIHOOD ESTIMATES FOR:
Shape Parameter, a Scale Parameter,

RATE (Hz) (Required Value=2.5) (Required Value=0.007)

50 2.01 0.0073

100 2.63 0.0071

200 2.84 0.0069

The above results indicate that there may be some difficulty in maintaining

the distribution shape parameter at the much lower sampling rate which would

correspond to one simulated airplane life.

3.1.7 Simulation of Random Maneuver Loads

The production of random noise to simulate stress time-histories is a task

similar to the simulation of a random population of initial-crack sizes. The
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programming task requires a simulation of a non-Gaussian process, such as

might represent fighter maneuvering loads.

In this case, it was decided to produce Rayleigh noise:

f(x) =  x e/ 2  ; 0 < x < 0 (69)

Equation 69 also describes a Weibull distribution for the special case a = 2,

= G/2. The shaping function required to produce Rayleigh noise from zero-

mean Gaussian noise is:

A(x) - 27 I (70)

Hence, the shaping filter can be simply constructed with a constant gain, two

inverters and a diode, as shown in Fig. 17.

A sampling experiment similar to the one described in Subsection 3.1.6

was conducted, using a l-rms Gaussian source, with the following results:

SAMPLING MAXIMUM-LIKELIHOOD ESTIMATE FOR:
Shape Parameter, a Scale Parameter, .

RATE (Hz) (Required Value=2) (Required Value=V)

50 1.92 1.43

100 2.04 1.50

200 2.18 1.54

In this case, the shape parameter appears to be less sensitive to the sampling

rate, probably because of the linearity of the shaping function.

3.1.8 Incorporation of Threshold Effect

The eighth programming task required incorporation of logic circuitry in

the Forman equation to recognize when AK is less than a prescribed threshold

value below which crack growth is assumed not to occur. When the Forman

equation is employed, the threshold value is commonly assumed to depend upon

the stress ratio, e.g.:

AK (l-R) AK 0  (71)
TH TH

where AK H is a material property measured in a zero-to-tension (R = 0) crack-
TH

propagation test. However, the stress-ratio effect on threshold was ignored

in the present study, i.e. AK = AK0 was assumed.
TH TH
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The threshold effect is easily implemented by placing an electronic

comparator between the gain, C', and the integrator which outputs the damage

parameter, -h (lower left in Fig. 8). With the switching function As/h - AK 0

TH

supplied to the comparator, the input to the integrator can be switched between

Eq. 13 when the threshold is exceeded and zero when AK is below the threshold.

A partial flow chart for the additional circuitry is illustrated in Fig. 18.

An example real-time simulation of the Forman equation with the threshold

effect was run with loading in which s . was held constant, while s wasmmn max

modeled by white noise to randomly trigger the threshold. The results are

shown in Fig. 19, which records the switch output and AK(t). It is evident

that the rate equation spends more time in the circuit as crack size increases,

until virtually all AK values contribute to crack growth. Also, it is apparent

that an equivalent simulation can be implemented with AKTH as given by Eq. 71,

since the term 1-R can be produced as s max/As using one additional "X/Y"

component.

3.1.9 Coupled Dynamics for Two Cracks

The final programming task required a demonstration of the ability to

simulate the simultaneous growth of two or more cracks with the rate equations

coupled through change of stress intensity near one crack as a function of the

size of the others. Situations of this type may occur in aircraft structures,

e.g. for two cracks 1800 apart growing away from the same fastener hole.

In the present study, a simplified situation was formulated strictly for

the purpose of demonstrating the coupling effect without introducing the compli-

cations associated with local geometry factors. Suppose that two panels in

parallel, of widths L1 and L2, are loaded such that both panels are subjected

to the same elongation. Let the panels contain edge-cracks of lengths a1 and

a2, and assume for the purpose of the demonstration that the panel compliances

are concentrated in narrow strips near the cracks. Then the stress levels in

the two panels are given approximately by:

P(LI-al)/L (72)

1 (Ll-a1)t + (L2-a2)t2

P(L 2-a 2)/L2 (73)

2 (L -a )t + (L 2-a2)t 2
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where P is the total load applied to the two panels and where ti, t2 are the

panel thicknesses. The problem is obviously artificial, but still serves to

test the ability of the analog to simulate coupled Forman equations.

For the case L1 = L2 
= L, t 1 t2 = t and NF = 3, the rate equations can

be expressed as:

S
dh C C

i 1 F 2 __ _ _

dN 2 K ()[Pmax Fi [S [Fi(l F 1 ; i=1,2
c c. max i

1

where

(L - 1/h2)/Lt

Fi (h1 2 2 2 i=i,2
2L - 1/h 1 1/h (75)

The loading is described by the parameters P and AP = P - P m Themax max min

analog flow chart appears in Fig. 20.

Debugging of this simulation was difficult, due to the instabilities

caused by the 1/h2 terms in the equations. However, two simulations were
1 -13

successfully completed using 7075-T6 properties (NF = 3, CF = 5 x 10

K = 68 ksi vin.). In the first simulation (Fig. 21), the initial conditions
c

were 0.01- and 0.01888-inch cracks (hI = 10, h2 = 7.3). (The values of the
0

constants Cj, C' are equal t /2K times the analog scale factor.) In the
2 Fo c

second simulation (Fig. 22), the initial conditions were equal-sized cracks,

while the growth rate of the second crack was arbitrarily increased by a
-12

factor of three (CF  = 1.5 x 10 ). In both cases, the panel dimensions2
L1 = L2 = 10 inches and tI = t2 = 0.1 inch were used, while constant-amplitude

loading with AP = P = 140 x 10 lbs. was chosen. In each case, the crackmax

which grows faster is observed to decelerate toward the end of life, while the

slower crack accelerates. This effect results from the transfer of load from

the panel with the larger crack to the panel with the smaller crack because of

the difference in panel compliance.

3.2 Evaluation of Results

The results of the simulation exercises indicate that the analog approach

to crack-growth prediction possesses some advantages and some disadvantages

with respect to digital simulation. Generally, the analog can accommodate
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random-process driving functions more conveniently, while the digital

computer is superior for the simulation of details.

The Forman equation was easily implemented on the analog for the special

case of a growth-rate exponent N. = 3 (representative of aluminum alloys).

Formulation in terms of the inverse damage parameter "h" makes the simulation

stable and permits studies of cracks growing between 0.01 and approximately

4 inches. Random-process drivers can be simulated directly by band-limited

white noise, with or without shaping filters to change the probability

density function. Simulation of other materials with fractional rate

exponents NF is possible in principle by using the log-antilog components

available on the analog patchboard. However, these components are essentially

specialized function-generators, and the effects of their possible inaccuracies

have not been assessed quantitatively for the crack-growth problem.

With regard to retardation effects, it is apparent that a digital simula-

tion will be superior. Although the Wheeler retardation model can be simulated

on the analog (again, at the price of using log-antilog components), any attempt

to treat the more sophisticated load-interaction models forces the simulation

toward long computing times because of the need for cycle-by-cycle detail in

the stress-parameter signals.

Local geometry effects for two-dimensional cracks appear to be amenable

to analog simulation by using a piece-wise linear function-generator with one

independent variable (a standard patchboard component). A reasonable simulation

of one such factor was achieved for a very severe case involving unbounded

increase of the stress intensity factor as a crack grows across the finite

width of a plate. Simulations of stable geometry effects, e.g. for a crack

growing away from a fastener hole, will be much easier. Again, the digital

computer is superior in comparison to existing Air Force analog hardware for

the simulation of geometry factors for three-dimensional cracks, which require

two input variables. However, commercial analog hardware is available for this

task (see Subsection 3.3).

Analog simulation of the effects of GAG cycles has been shown to be feasible.

Separate simulations were implemented for the isolated large stress range associated

with each takeoff, and for the effect of the change in mean stress from taxi to

flight loads.
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Investigation of the use of shaping filters indicated that both Rayleigh

and Weibull processes could be produced from the band-limited Gaussian noise

sources available on the analog. However, the results of the tests also

indicated some difficulty in accurately reproducing the desired shape parameters

for these distributions. Further tests are required to assess the crack-size

inaccuracies which might result from inaccuracy of the process shape parameter.

The threshold stress intensity effect was simulated successfully with no

difficulty. However, analog simulation of the threshold effect cannot be

extended to include the "shutoff" phenomenon, which may occur when load-

interaction effects are properly accounted for.

Finally, it has been shown that coupled crack dynamics can be simulated

on the analog. However, there is no reason why an equivalent digital simulation

could not be implemented.

In summary, the results of the analog simulations indicate that the analog

computer provides about the same level of capability as the digital computer,

but with some important differences in detail. Hence, there appears to be no

overwhelming reason to convert from the digital to the analog approach to

crack-growth prediction, especially since many digital programs have already

been developed, and in view of the fact that many structural engineers are

unfamiliar with analog programming techniques.

3.3 Equipment Availability

In recent years the usage of existing analog and hybrid computers and the

demand for new machines has declined significantly. Complete listings of present

day manufacturers of hybrid computers are difficult, if not impossible, to

obtain. A request for information sent to the six manufacturers listed in the

1972 edition of the Computer Yearbook yielded only two responses (see Appendix C).

Some or all of the companies that did not respond may no longer be in existence.

Fortunately for the analog/hybrid user, the responding manufacturers have

continued to improve and refine their products. In particular Electronics

Associates, Inc. has added multivariable function-generators to their line of

products and accessories. Although digital multivariable function generators

have been in use for some time, the EAI function-generator employs analog

computation between function break points. The multivariable function generator

acts independently of the digital central processor and thus achieves a combina-

tion of speed and accuracy.
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Appendix D compares the features of available new machines with the

existing CI-5000/5 computer at Wright-Patterson Air Force Base. Although

some of the conveniences and more advanced design philosophies of today's

new machines are not reflected in this table, the basic features required

for solving the problems discussed in this report are listed. The existing

Wright-Patterson hybrid computer compares favorably on all requirements, with

the exception of multivariable function-generators.
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Section IV

CONCLUSIONS AND RECOMMENDATIONS

4.1 Summary

The results of a program to develop an efficient approach to the risk

analysis of random-load crack growth have been presented. The two major

objectives of the program were to implement certain specific simulations of

crack growth on hybrid analog/digital hardware, and to develop an improved

approach to the modeling of random loads.

Under the first objective, eight of nine specific simulation tasks were

implemented and verified on analog/digital hardware available at the USAF

Aeronautical Systems Division computing facility (ASD/ADSD). These simula-

tions were achievable well within the existing hardware capability (i.e.,

numbers of multiplier, summation, integrator circuits, etc.) with one exception.

The exception is the geometry factor required for stress-intensity calculations

associated with three-dimensional cCks. Calculation of this factor requires

a function-generator with two independent variables; commercial hardware possess-

ing this capability has been identified.

The ninth task involved load-interaction (retardation) effects and could

not be fully implemented as an analog simulation. The Wheeler retardation model

could be simulated by using logarithm and anti-log circuits, but the accuracy

of these circuits is questionable. Attempts to formulate the more refined

cycle-by-cycle retardation models were completely unsuccessful because of the

difficulty in extracting the discrete information required for calculating

retardation from the continuous simulation of stress time-history.

Under the second objective, a general procedure has been proposed for

characterizing random loads from surveys of recorded flight data, in terms of

those load statistics which influence crack growth most significantly. In the

course of this development, a general study of how to formulate the problem of

predicting crack growth due to random loads led to two improvements in the

approach. First, the crack growth-rate equations were reformulated in terms

of a damage parameter inversely related to crack size. Second, the "estimation

theory"developed by modern theorists in guidance and control has been considered

for crack growth prediction to obtain a more efficient numerical approach to risk

analysis, as described in the following subsection.

43



4.2 Estimation Theory for the Prediction of Crack-Growth Statistics

In the course of investigating modeling methods for load statistics, the

usefulness of estimation theory for application to crack-growth risk analysis

was identified. Estimation theory [21,22] is concerned with the analysis of

the states of dynamic systems, where such states are not accurately known for

three reasons. First, the initial conditions of the system may not be accu-

rately known. Second, the dynamic system is affected by input noise. Third,

measurements of the state are also affected by noise, so direct observation of

the state is not possible. Because the states are not accurately known, they

can only be described statistically. A diagram of this situation is presented

in the upper portion of Fig. 23. It should be noted that the noises, states,

and measurements shown in the figure are vector quantities, not merely scalars.

It is convenient for the purposes of the estimation theory to represent

the dynamic system in "state-space" formulation. The differential equations

of the dynamic system, of total order n, can always be rewritten as n first-

order differential equations in terms of n variables. These n variables are

collected in the "state vector" {x}. The system equation can then be written

as

d {x} = {f({x})} + [G({xl)] {w}
dt (76)

"state "white

vector" noise"

For the case of a linear system, {f({x})} is simply linear in {x}, and

[G({x})] is constant, so that the system equation can be written as

d{x} = [F]{x} + [G]{w}aTt (77)

It must be noted that the block diagram of the system shown at the top of

Fig. 23 has Gaussian noise input, while the equations shown above allow only

for "white noise" (Gaussian noise with flat power spectral density). This

discrepancy is easily handled because any Gaussian noise can be produced

by passing white noise through an appropriate linear filter. As shown in

the lower diagram, an "augmented system" can be developed, with an "augmented

state vector" including the states necessary to represent the dynamics of the

"input noise filter". The augmented problem is then appropriate for treatment

using the equations shown above.
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The development of estimation theory began with consideration of steady-

state (stationary) behavior of linear systems, with all variables having

Gaussian statistics. This restricts the problem represented by Fig. 23 in

three ways. First, the system equation can be expressed as in Eq. 77, which

restricts the system dynamics to be linear and the noise input to be Gaussian.

Second, the matrices [F] and [G] are not time-varying, which restricts the

system and the noise input to be both stationary. Third, the system has

reached a steady state, or in other words enough time has passed for the

initial conditions to have long ceased to have an effect on the problem. This

restrictive form of estimation theory is not applicable to the crack-growth

problem, which is an entirely transient problem without a steady state.

Estimation theory was then extended to consider non-steady-state (non-

stationary) situations, but the models of the system and noise remained linear

and Gaussian. The initial conditions of the system became important. This led

to the development of the Kalman filter for estimation of the state of a system.

Referring again to Fig. 23, the Kalman filter (measurement filter) keeps track

of the statistics of the state variables, which are entirely represented by

their vector of means and matrix of covariances, since all statistics are

assumed Gaussian. The Kalman filter updates these statistics based on a number

of effects. First, the system dynamics cause the expected value of the state

to change, with corresponding changes in the covariances. Second, the noise

input to the system increases the uncertainty of the states, which is realized

as an increase in the covariances. Third, the measurements provide information

which is useful in better estimating the expected value of the states. Based

on the relative accuracy of the measurements (as described by the measurement

covariances) and the accuracy of the current estimate of the state (as described

by the state covariances), an adjustment of the expected values of the states

is made towards the measured values, and the increased accuracy of the estimate

is realized as a decrease in the state covariances.

The Kalman filter has been extremely valuable in situations where the best

estimate of a state variable was very important, but accurate measurements of

that state variable were not available. For instance, navigation of a vehicle

is often dependent on noisy (inaccurate) position measurements, especially when

operating away from regular routes. In such a situation, the Kalman filter can

greatly improve the estimate of current position and heading. In the utilization

of the Kalman filter, the greatest difficulty occurs in accounting for the measure-

ments. The propagation of the statistics of the state, considering the system

dynamics and the Gaussian noise input, is straightforward.
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Many attempts have been made to extend estimation theory to cases of

nonlinear systems or linear systems with non-Gaussian statistics, but these

were not entirely successful. Jazwinski [21] says that

"Using linearization of one sort or another, Kalman-like
filtering algorithms were developed and applied to non-
linear problems. This statistical work received its
impetus from the aerospace dollar. Work was duplicated,
triplicated; everyone derived his own Kalman filter,
perhaps partly because of a lack of understanding of
Kalman's original work."

It was soon learned that development of estimation procedures for non-

Gaussian statistics and nonlinear systems required a much deeper understanding

of the fundamental probabilistic structure of the estimation problem, than did

the development of the Kalman filter. This fundamental probabilistic structure

is now more completely understood, but estimation of non-Gaussian statistics

with nonlinear dynamic systems is still not commonly performed because of the

immense computational difficulties involved. First, the means and covariances

of the state variables no longer completely define their statistics. An infinite

number of statistical parameters would theoretically be necessary to completely

define the statistics. However, as long as the random variables are defined

so their statistics are not far from normal, a small number of these parameters

(such as the first few moments of the probability density functions) can serve

as a useful approximation to the complete statistics. The number should be

kept as small as possible since each additional parameter disproportionately

increases the amount of information that must be carried throughout the

computations.

The system dynamics, which are now considered to be nonlinear, also

theoretically require an infinite number of parameters to completely specify

their behavior. However, the forms of {f({x})} and [G({x})] are usually

provided with sufficient accuracy by closed-form expressions. In the develop-

ment of the propagation of the statistics for the nonlinear non-Gaussian system,

the dependence of these system dynamic descriptors will be approximated by taking

the first few terms of their Taylor series expansion in the states, about the

means of the states.
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For the linear Gaussian case, it was pointed out that consideration of

measurements greatly increased the complexity of the filter. For the nonlinear

non-Gaussian case, this increase in complexity is magnified many times over.

Fortunately, treatment of measurements will not be part of the crack-growth

problem being considered.

The propagation of the first few moments of the probability density of the

state for the nonlinear non-Gaussian case is substantially more complicated

than for the linear Gaussian case. However, it is a straightforward calculation

which can be implemented on a digital computer. There are a number of effects,

not present in the linear Gaussian case, which may be important. First, the

effect of the nonlinearity of the system cannot be approximated by merely

linearizing about the mean value of the states, because this would ignore the

very important variations in how the system operates on other-than-average

values of the states. Second, the analysis must consider more than the first

two moments of the probability density (mean and covariance) even if they are

the only results desired, because in the presence of the system nonlinearities

higher density moments will affect the propagation of the lower moments. Third,

the non-Gaussian statistics of the initial conditions must be considered. Fourth,

the non-Gaussian statistics of the input noise should be considered. This fourth

effect is probably the least important because the input noise effects are

averaged over the time period of concern, but even this effect should not be

ignored unless examination of the particular problem shows it to be unimportant.

The problem of predicting crack-growth statistics can now be put in the

context of estimation theory. It will be necessary to model the behavior of

crack growth by a dynamic system, and to model the important effects of the

loading of the structure by a random noise input. It will also be necessary

to consider the dynamic system as nonlinear, and the statistics of the noise

and state variables as non-Gaussian.

While Gaussian statistics can be completely represented by the first two

moments of the probability density (mean and covariance), non-Gaussian statistics

generally require an infinite number of statistical parameters to completely

represent them. The non-Gaussian statistics are therefore approximated by taking

only the first few density moments (perhaps the first four). This approximation

will be reasonable only if the higher-order moments do not have significant

effect, which is equivalent to saying that the statistics are not far from

Gaussian. This will usually be the case if and only if the system dynamics
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are not far from linear. Unfortunately, the dynamics of crack growth are

highly nonlinear if they are formulated with crack size itself as a state

variable, as explained in Subsection 2.1. The solution as presented there

is to reformulate the crack-growth dynamics in terms of a damage parameter

"h". As was shown in Figs. 1 and 2, this results in a linear dynamic system

for the simple case of the Paris crack-growth equation, and a near-linear

system for more realistic models such as the Forman equation. Without the

use of this damage parameter, the employment of the first few probability

density moments to approximate the nonlinear statistics would be inadequate,

and the use of a sufficient number of moments would be unrealistically compli-

cated.

Even with the necessity to consider the nonlinear and non-Gaussian

situation, the major difficulty of the associated estimation theory is avoided

by the crack-propagation problem being considered here. This difficulty is

the treatment of measurements, which do not exist in the prediction problem.

Without measurements, the nonlinear non-Gaussian situation, which has been

either avoided or implemented only at extreme cost by investigators considering

other problems, becomes feasible. An additional factor which makes it feasible

to handle this situation is that the computations will be performed on large-

scale ground-based computers, while many applications of estimation theory

have required that computations be performed in real time on much more limited

on-board computers.

The system dynamics representing the behavior of crack growth are relatively

easy to develop. Available crack-growth models such as the Forman equation are

utilized, with the necessary transformation to model the behavior in terms of

a damage parameter "h".

The input noise to the dynamic system models the essential characteristics

of the loading experienced by the structure, such as stress range As and peak

stress s . The treatment of complex effects, such as retardation, may be
max

included in the development of the input noise model, as was described in

Subsection 2.2.

The statistics of the initial conditions of the system (corresponding to

the initial-crack sizes) must also be modeled. The initial-crack sizes are

usually quite small, with some occurrence of larger initial defects. The

probability density function of initial-crack size might very well appear as

shown in Fig. 24, with two peaks (a bimodal distribution). This type of
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density is not well represented by its first few moments. However, bimodal

distributions can be handled by considering the density to be the sum of two

separate densities, as shown in the figure. The two densities are utilized

as initial conditiQns for two separate analyses, and the results of the

separate analyses are then combined. This illustrates the capability of

handling a multi-modal density function accurately, while still approximating

the non-Gaussian statistics by only the first few moments of the density

function.

4.3 Discussion and Conclusions

Although eight of nine analog simulation tasks were successfully imple-

mented, evaluation of the computing performance indicated that the analog

approach to cycle-by-cycle or flight-by-flight crack growth prediction does

not achieve any real improvement in computing efficiency, in comparison with

equivalent digital computer codes. The inability of analog equipment to

process high-frequency signals implies long computation time for one airplane

life. Also, analog-circuit errors are significant enough to require repetition

of the analysis several times, simply to assess the error in crack size for a

deterministic load history. If Monte Carlo simulation to obtain the crack-

size distribution due to random loading is attempted, very uneconomical

computation times result, and the circuit errors cannot be separated from the

intended random effects of the applied loading. Finally, load-interaction

effects cannot be simulated conveniently with analog equipment. Therefore,

analog Monte Carlo simulation is considered to be a less useful approach to

risk analysis than the estimation-theory formulation.

Regardless of the approach used for risk analysis, it has been shown

that statistical treatment in terms of a damage parameter as described in

Subsection 2.1, rather than directly in terms of crack size, can significantly

improve the accuracy of and reduce the complexity of the analysis.

The apparent computational efficiency of estimation theory results from

its avoidance of direct numerical summation of crack growth-rate equations.

However, estimation theory must be formulated carefully for application to

the crack-growth prediction problem, for which the dynamics are nonlinear

and the statistics are non-Gaussian. Computational efficiency will depend on

a formulation in terms of near-linear dynamics and near-Gaussian statistics,
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which can be achieved by reformulation of the growth-rate equation in terms

of a damage parameter. The growth-rate dynamics are then expanded in a

Taylor series about the mean state, and the statistics of the state are

approximated by the first few moments of its probability density function.

The numerical procedures for the application of estimation theory to

prediction of crack-size statistics dictate that digital rather than analog

computation be adopted. The resulting scheme will be able to provide the

first several moments of the probability density of the damage parameter,

not merely the first moment (expected value). This information can be used

to estimate exceedance probabilities of critical values of the damage param-

eter (corresponding to critical-crack sizes), allowing much more accurate

risk analysis than is possible with present schemes. The computational costs

are expected to be comparable with present schemes which provide only the

expected value of final crack size.

Some practical questions about load models still remain to be answered,

i.e. how much flight data must be analyzed to provide a good model and what

counting methods should be used? However, such questions must be answered

independent of the general approach taken to the problem of predicting crack

growth. One question which does affect the utility of any approach is how

to treat load-interaction models. With regard to the estimation-theory

approach, it has been shown that retardation can be treated efficiently, on

a cycle-by-cycle basis, by incorporating existing retardation models in the

flight-data-reduction scheme. Appropriately adjusted random-load statistics

can then be used in an estimation-theory formulation of the prediction prob-

lem for an airplane life. Therefore, the estimation-theory approach for risk

analysis of cracks propagating under random loads is promising and warrants

continued development.

4.4 Recommendations

The use of a suitably defined "damage parameter", rather than crack size

itself, is highly recommended for any statistical analysis of fatigue damage,

regardless of the approach taken. The slight inconvenience of working with a

less-than-obvious random variable is more than offset by the improved accuracy

and efficiency obtained with the damage parameter. Final results may always

be transformed for presentation in terms of crack size itself, if desired.
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Direct inspection of large quantities of actual flight data is recommended

to obtain the important statistics of loading sequences for utilization in risk

analyses. Although this entails a substantial effort, the effort required to

obtain such statistics when given an analytically describable approximate load

model may not be significantly less. In addition, direct inspection of the

flight data avoids the errors associated with analytically describable

approximate models.

Further development of the application of estimation theory to aircraft

fatigue damage risk analysis is recommended. The techniques of estima-

tion theory, when applied to analysis of damage in terms of an appropriately

chosen damage parameter, promise to provide efficiency and accuracy in risk

analysis greater than can be obtained by present methods.
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APPENDIX A

FORTRAN PROGRAM FOR CALCULATION OF CRACK-GROWTH STATISTICS

DIMENSIOI DSMU (101) ,DMC (101) ,DS4MU(26) ,GML (26) ,'rMtlE (2&)
1 REAC (5,901) NS,MM,MAXP
901 FCRtiAT (3110)

IF (NN.E0.0) STOP
2 READ (5,902) DSMEAN,DSSIGM,AZFRO,CP
902 FORMAT (8F10.0)

WRITE (6,911) NN,MM,MAXP,DSMEAN,DSSIGM,AZERO,CP
911 FORMAT ('ONN=',15,5X,'M=',I5,5X,'MAXP=',I5,5X,/,

1 ' DSMEAN=I,Fl5.5,5X,'DSSIGM=',Fl5.5,5X,'AZERC
= ',

2 F15.5,5X, 'CP=',E16.8)
C
C FIND DSMUI, WHERE DSMUM(I) (I+1)TH CENTRAL MOMENT OF DS
C

MAXK F AXP 
MAXKF MAXK + 1
MAXPP = MAXP + 1
DSMU() = 1.
DO 100 I = 2,MAXK,2

100 DSMU(I) = 0.
DSS2 = DSSIGM**2
DSSP = 1.
AMULT = 1.
DO 110 I = 3,MAXKP,2
DSSF DqSP*DSS2
AMULT = AMULT * FLCAT(I-2)

110 DS4U(I) = AMULT * DSSP

WRITE (6,913) (DSMU(I),I=1,MAXKP)
913 FORMAT (' DSMUI,/,6(3X,F16.9))
C
C FIND DSMC WHEE DSMC(l) = (I+1)TH MOMENT AB)LTT ZERO CF DS
C

DSMC(1) = 1.
FACTK = 1.
Df 200 K = 1,MAXK
FACTK = FACTK * FLCAT(K)
FACTKR = FACTK
IR = 0

DSMO(K+l) = 0.
FACTR = 1.
ESM 1.

C ADD CONTRIBUTION FOR THIS IR

150 DSMO(K+I) = DSMC(K+l) + DSMR * DSMU(K-IR+l)
1 * FACTK / (FACTKR*FACTP)

C INCREASE IF
IP = I? + 1
IF (I5.GT.K) GC IC 170

C PREPAFE FOR NEW IF CONTRIBUTION
FACTP = FACTR * FLCAT(IR)
FACTKR = FACTFR / FLOAT(K-IR+l)
DSMF = DSMF * rSMEAN
GO TO 150

170 CCNTINUE
200 CONTINUE
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rS4MEN = ESMC(5)
WPITE (6,914) (DSMC(I) ,1=I,MAXKP)

914 FCRMAT (' DSM0',/,6(3X,E16.8))
C
C FIND DS4MU WHERE rS4MU(I) = (I+1)TH CENTRAL MCMENT OF (DS**U)

C
DSWIM(1) = 1.

FACTK = 1.
DO 300 K = 1,MAXP

FACTK = FACTK * FLOAT(K)

FACTKR = FACTK
IF = 0
DS4MU(K+l) = 0.
FACTP = 1.
DSMR= 1.
AMIR = 1.

C ADD CCNTRIBUTICN FOR THIS IR
250 DS4MU(K+l) = DSI4MU(K+Il) + AMIR * DS4MR * DSMC(4*(K-IR)+1)

1 * FACTK / (FACTR*FACTKB)

C INCREASE TR
IF = IF + 1
IF (IR.GT.K) GC TC 270

C PREPAPE FOR NEW IF CCNTPIBUTICN
FACT? = FACTP * FLOAT(IR)

FACTKR = FACTKR / FLOAT(K-IR+l)
DS4MP = DS4MP * DS4MEN

AMlR = -AMIR
GO TO 250

270 CONTINOE
300 CONTINUE

WRITE (6,q15) (DS4MU(I),I=1,MAXPP)
q15 FORMAT ( ES4MU',/,6(3x,El6.8))
C
C 7IND GMU WHERE GMU(l) = (!+1)TH CENTPAL NOMENT OF G

C
GMAN= DS4MEN
GMLJ (1) = 1.

DO 3000 NP = 1,MAXP
C
C GIVEN --- NN = NUMBER OF ITEMS BEING SUMMED

C NP ORDER OF MOMEVT OF PROBABILITY DENSITY OF

C SUM WHICH IS BEING CCMPUTED

C DS4MU = CENTRAL MOMENTS IF ITEMS BEING SUMMED

C
C LIMENSION NEACH .GE. (NP/2)

0I4ENSI;N NEACH (50)
C AM IS THE MCMENT CF THE SUM WHICH IS PEING COMPUTED

AM = 0.
C PREPAFE FACTMF

FACTNP = 1.
DO 1090 i = 1,NP

1090 FAZTNP = FACTNP * PLCAT(I)

C
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C PPEPAPE FIRST CCMBINATION
C

K = NP/2
IF (NN.IT.K) K = NN
IF (K.E0.O) GO TO 2000
LEVEL = 1
DO 1100 I 1 I,K

1100 NFACH(I) 2
NEACH(1) NP - 2*(K-1)

C
C PREPARE FACIN AND FACTK FOR NEW K
C
1150 FACTN = 1.

DO 1160 I = 1,K
1160 FACTN = FACTN * FL-'AT(NN+1-I)
C
C COMPUTE CONTPIBUTION OF THIS CCNFIGURATON
C
1200 FACTR =.

FACTNB 1.
INB = 1
DO 1220 I = 1,K
KB = NEACH (I)
I (I.FO.1) GC TO 1210
INB = INB + 1
IF (NEACH(1).NE.NEACH(I-I)) IN9 = 1

1210 FACTNB = FACTNR * FLO.AT(INB)
DC 1220 J = 2,KB

1220 TACTS = FACTB * FIOAT(J)
AMP = FACIN * FA7TNIP/ ( FACTB * FACTNB3
DO 1240 I = 1,K

1240 APP = AMP * DS4MU(NEACH(I)+l)
AM = AM + AMP

C
C IOOK FOR NEXT EXAMPLE
C

IF (K..EQ.l) GC TO 2000
LEVTRY = LEVEL + 1
IF (LEVTPY.EO.K) LEVItY = LEVEL

1260 IF ((NEACH(LEVT.RY)-l)-LE.NEACH(LEVTPY+1)) GO TO 1400
lEVEL = LEVTRY
NEACH(LEVEI) = NEACH(LEVEJ) - 1
NEACH(LEVPI,+l) = NEACH (IEVEL+l) + 1
GO TO 1200

C
C FEDUCE LEVTPY
C
1400 LIP = LEVTRY + 1

NFXCES = 0
DC 1270 I = LTP,K
NEXCES = NEXCES - NFACH(l) -2

1270 NEACH(I) = 2
!IEACH (LEVTRY) = NEkCH (LEVTRY) + NEXCES
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LEVTFY = LFVTRY - 1
IF (LEVTTY.GE.1) GC TO 1260

C
C LEVTRY REACHED ZERn -

C WHICH MEANS IT IS TIME TO REDUCE K
K = K - 1

TF (K.EQ.0) GC TO 2000
NEACH(1) = NEACH (1) +2

lEVEL = 1
GO TO 1150

C
2000 CONTINUE
3000 GMU(NP+I) = AM / FLOAT(NN)**NP

WRITE (6,916) (GMU (I) ,I=1,MAXPP)
916 FORMAT (I GMUI,/,6(3X,E1

6 . 8 ))

C
C FIND GMITE WHICH IS THE 1ECCENTRICITIES' OF G

C GMUEM(I) (1+1)TH ECCENTRICITY
C

GMUE(1) = 0.
GMUE (2) 0.
GMUE(3) = C.
RMULT 1.
RGM!12 (GMU (3) **. 5)

DO 3500 K = 3,MAXF,2

GMUE(K+l) GMU (K+l) / (rGMU2**K)

IF ((K+1).GT.MAXP) GC TC 3500

AMULT = AMULT * FLCAT(K)

GMUE(K+2) = GMIJ(K+2) / (RGMU2**(K+1)) -AMULT

3500 CCNTINTE
WPITE (6,917) (GMUE(I) ,I=1,MAXPP)

917 FORMAT (' GMUE,/,6(3X,E16.8))
DHMEAN -CP * MM * GMEAN

DHM112 = (CP*FLIAT (M.M)) **2 * GMIU (3)

WFITE (6,922) GMEAN,EHMEAN,DHMU2
922 FORMAT 0 GMFAN=',Fl-.5,5X,

DH M- AN= I,Fl S . 5 ,5X, ' DIMU2 = ,Fl 5 . 5 )

GC TC I
END
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APPENDIX B
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APPENDIX C

COMMERCIAL HYBRID COMPUTER MANUFACTURERS

MANUFACTURER COMMENT

ADAGE, INC.

1079 Commonwealth Ave. Mostly Display Equipment

Brighton, Mass. 02159

APPLIED DYNAMICS COMPUTER SYSTEMS DELTA FOUR

2275 Pratt Road Plug & Logic to IBM/360 & XDS/SIGMA

Ann Arbor, Mich. 40104 Optimization & Simulation

COMDYNA INC. Model 648

N.A. Plug & Logic to EAI

Simulation & Student Training

ELECTRONIC ASSOCIATES, INC. (EAI)*

185 Normouth Parkway 590, 690, 7945

West Long Branch, N.J. 07764 Simulation

GPS INSTRUMENT COMPANY, INC.

188 Needham Street 200T System

Newton, Mass. 02164

SYSTRON-DONNER CONCORD INSTRUMENT DIVISION*

888 Galindo Street Model 80Y

Concord, California 94520 Simulation & On-Line Control

*

Manufacturers which responded to survey.
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APPENDIX D

HYBRID COMPUTER FEATURES

EAI Pacer Systron-Donner Wright-Patterson

Item 500-700 Series() System 80 H (I  Astrodata Hybrid
with CI-5000/5

Analog

Integration/Summation

Units 8-42 10-24 85

Summation Units 8-54 36-112 (2) 85

Multiplier Units 2-60 4-114 171(3)

Single Variable
Function Generators 0-36 3-15 37

Comparators/
Switching Units 2-36 9-24 56

Analog Multi-Variable (4)
Function Generators Yes No No

Available

Digital Core 8K-32K Maximum
Unknown

Comments Wide variety Includes
of peripherals UNIBUS PDP-11
and accessories central
available processor

(1) Numbers dependent upon specific model and/or series selected. Range
of values given.

(2) Number of operational amplifiers given. May be used as integrators

or summers.

(3) Includes inverters and resolvers.

(4) Some computation performed digitally.
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